Home | About IPJ | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Contact us |   Login 
Industrial Psychiatry Journal
Search Articles   
Advanced search   

Year : 2022  |  Volume : 31  |  Issue : 2  |  Page : 181-182  Table of Contents     

Nanopsychiatry: Is it a big thing in small size?

1 Professor Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
2 Professor and Head Psychiatry, Dr. D. Y. Patil Medical College, Pune, Maharashtra, India
3 Professor and Head Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
4 Scientist G and Clinical Psychologist, Armed Forces Medical College, Pune, Maharashtra, India

Date of Submission16-Sep-2022
Date of Acceptance28-Sep-2022
Date of Web Publication30-Sep-2022

Correspondence Address:
Prof. Jyoti Prakash
Professor Psychiatry, Armed Forces Medical College, Pune - 411 040, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ipj.ipj_157_22

Rights and Permissions

How to cite this article:
Prakash J, Chaudhury S, Chatterjee K, Srivastava K. Nanopsychiatry: Is it a big thing in small size?. Ind Psychiatry J 2022;31:181-2

How to cite this URL:
Prakash J, Chaudhury S, Chatterjee K, Srivastava K. Nanopsychiatry: Is it a big thing in small size?. Ind Psychiatry J [serial online] 2022 [cited 2023 Jan 31];31:181-2. Available from: https://www.industrialpsychiatry.org/text.asp?2022/31/2/181/357679

Nanomedicine, that is, use of nanotechnology's concepts for health and well-being, has found wide avenue in the field of diagnostics, therapeutics, and research. A question arises: Does it hold similar promises in the realm of psychiatry? Recent past has seen a lot of work in the field of nanomedicine with use of nanoparticles (1–100 nm) in pharmacology, tissue regeneration, biosensors, modeling of complex systems, and so on. Research and outcome in nanopsychiatry, although less and tardy, has been promising.[1]

   Nanotechnology in Psychopharmacology Top

Entry of a drug to target cells is determined by phagocytosis (intake of solid material), macropinoctosis (intake of liquid material), and receptor-mediated endocytosis. Important factors for target delivery are a small particle size, particle shape, contact angle between the cell membrane and particle, rigidity, surface charge, and expression of receptor and surface ligand. An additional limiting factor in psychiatry is the blood brain barrier, through which 98% of the low-molecular weight molecule fails to cross. An ideal molecule thus is a small, compact, and lipophilic one which delivers the drug inside specific cells while negates possibility of side effects by avoiding cells other than targeted cells. Nanocarriers have been found to be effective in such targeted delivery. Some of these are as under[2]:-

  1. Nanoliposomes – they can carry the drug inside the lipid bilayer. These are chemically reactive and couple to specific ligand-like antibodies, antigens, cell receptors, nucleic acid probes, and so on.
  2. Niosomes – these are non-ionic surfactant vesicles. They are similar to liposomes in physical properties with better chemical stability.
  3. Nanopowder – commonly includes silver, gold, iron oxide, or silica nanoparticles.
  4. Nanocluster – high-quality nanoparticles with precise control over particle size, shape, structure, and composition
  5. Nanocrystal – size of the material reduced to less than 100 nm by milling, high-pressure homogenization, controlled precipitation, and so on. A decreased size increases the solubility of drugs.
  6. Micelles – these gather by themselves to form a core. Hydrophobic drugs can be thus encapsulated or solubilized in the core.
  7. Carbon 60 – it contains 60 carbon atoms arranged as 20 hexagons and 12 pentagons. It can carry large drug payload in the cage-like structure.
  8. Carbon nanotube – it is adept at entering nuclei of cells. It may be used to deliver drugs and vaccines and can form the basis for gene therapies.
  9. Nanopolymers – these are two-dimensional and three-dimensional polymers formed under high-pressure and high-temperature conditions. They can open the tight junctions of the blood brain barrier and release the drug for a prolonged period.
  10. Nanoshell – It is commonly silica nanoparticles with a metal shell. It releases contents on heating and could be activated at opportune time.
  11. Dendrimers – branched macromolecules constructed around a simple core unit. They do not induce undesired immune responses.
  12. Tocosome – it has both lipidic and aqueous compartments for separate/simultaneous carriage of hydrophilic and hydrophobic material.
  13. Combination of several above molecules has been tried to increase the synergy and efficiency of drug combination.

   Nanotechnology in Analysis of Living Organisms Top

  1. In vivo imaging – paramagnetic nanoparticle contrast agents are being used in magnetic resonance imaging for better targeted detection. It has been useful in early detection of senile plaques in Alzheimer's disease and has shown potential as an early biomarker for psychiatric disorders and as a marker of response to psychotropic medications.[3]
  2. Metabolome analysis – metabolomes are a set of metabolites, which express cellular functions and the physiological overall status of an organism at any given time, with accuracy. Nanotechnology can help develop markers in understanding severity of illness or drug effects. Its use has been explored in cancer, diabetes, CVS and CNS diseases, and so on. Analysis of metabolomes can constructively modify early stages of drug development.[4]
  3. Modeling of CNS – Inorganic synapses made of nanoparticles are capable of short-term potentiation, long-term metastable potentiation, retention, and implementation. Neural networks are two-dimensional assemblies of nanodevices to model networks that recreate neural organization. These have molecular interlock switches corresponding to synapses, nano-wires representative of axons and dendrites, and nano-circuits corresponding to neuron cell bodies. These are capable of self-stimulation and empowering themselves after specific training. These models are useful in artificial intelligence, understanding mental illnesses and effects of external disturbances, and predicting evolution and complications of the disease.[5],[6]

   Concerns with Nanotechnology Top

There are concerns associated with risk to health with use of nanotechnology. Drugs which get into brain more efficiently may leave brain similarly. It may induce immune reactions or excessive production of free radicals. Thus, even though nanotechnology appears to hold good promises for future, sustainability of these has to stand the scrutiny of time.

   References Top

Fond G, Macgregor A, Miot S. Nanopsychiatry-the potential role of nanotechnologies in the future of psychiatry: A systematic review. Eur Neuropsychopharmacol 2013;23:1067-71.  Back to cited text no. 1
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 2018;16:71. doi: 10.1186/s12951-018-0392-8.  Back to cited text no. 2
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Contrast agents delivery: An up-to-date review of nanodiagnostics in neuroimaging. Nanomaterials 2019;9:542. doi: 10.3390/nano9040542.  Back to cited text no. 3
Zhang B, Xie M, Bruschweiler-Li L, Brüschweiler R. Nanoparticle-assisted metabolomics. Metabolites 2018;8:21. doi: 10.3390/metabo8010021.  Back to cited text no. 4
Lao J, Xu W, Jiang C, Zhong N, Tian B, Lin H, et al. Artificial synapse based on organic–inorganic hybrid perovskite with electric and optical modulation. Adv Electron Mater 2021;7: 2100291. doi: 10.1002/aelm.202100291.  Back to cited text no. 5
Prezioso M, Merrikh-Bayat F, Hoskins B, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015;521:61-4.  Back to cited text no. 6


    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Nanotechnology i...
    Nanotechnology i...
    Concerns with Na...

 Article Access Statistics
    PDF Downloaded189    
    Comments [Add]    

Recommend this journal